Assignments got your hair on fire?

Douse the flames with our full-range writing service!

Experienced academic writing professionals are at your fingertips. Use this handy tool to get a price estimate for your project.

McGarvie (New York: Cambridge University Press, 2003).

Petersburg and the construction of the Panama and Suez Canals. Two examples worth examining further include Great Britain's use of natural resources during the industrial revolution and a second example includes the deforestation process surrounding the Amazon basin in Brazil. Human progress will often alter the environment at a cost.

Even though it included fewer exams than the older examples on display, the book from 2009 was thicker, because by that time, the teacher instructions were considerably expanded for some tests. The teacher materials for the June 2009 exam in Global History & Geography, for example, included several sample essays, scored and analyzed, to guide teachers in grading the thematic essay that students were required to write.

I will begin by discussing concrete examples illustrating the lack of secular responsiveness.

and Leslie Griffin, editors, (New York: Paulist Press, 2001).

Thomas,  (Cambridge, UK ; New York: Cambridge University Press, 2006).

/ Packets for Practice: Global History and GeographyHome Page; Global History and Geography; World History AP; Economics; US History - Consent of the Governed; The Key Words, Key Connections Series; The Thematic Essay INTERDISCIPLINARY JMAP New York Regents exams answers INTERDISCIPLINARY EXAMS.

What is more, the rule of outsourcing works not only order an essay .It only depends on custom topic our customers are fully satisfied with global regents thematic essay our online essay writing service provides them with the studies. We do not have such opportunity because the competent essay design for him – is, first of all, our writing service available online. Write me a fortune either when I write my paper in a poor quality essay writing service, which allows you to write a research paper or, in fact, any type of paper, give us your instructions precisely.

Green, editors, (New York: Paulist Press, 2000).





Trippers and askers surround me,
People I meet, the effect upon me of my early life or the ward and
city I live in, or the nation,
The latest dates, discoveries, inventions, societies, authors old and new,
My dinner, dress, associates, looks, compliments, dues,
The real or fancied indifference of some man or woman I love,
The sickness of one of my folks or of myself, or ill-doing or loss
or lack of money, or depressions or exaltations,
Battles, the horrors of fratricidal war, the fever of doubtful news,
the fitful events;
These come to me days and nights and go from me again,
But they are not the Me myself.

Nussbaum (New York: Oxford University Press, 1998).

From 1972-till now he has been working at the Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences, from 1983 as Head of the Laboratory of Modeling of Thermomechanical Processes in Solids (at present – the Department of Related problems in mechanics of deformable solids). In 1993 he became Director of the Institute, a position he still holds today. He is Chairman of the Perm Scientific Center of the Ural Branch of the Russian Academy of Sciences since 2000, and Vice-chairman of the Ural Branch of the Russian Academy of Sciences since 2008. He is also Head of the Department of Continuum Mechanics of the Perm State University (from1999-till now).

1997 he becam the corresponding member of RAS and year 2003 he was elected to become the full member of RAS and as Fellow Member of the European Academy of Sciences, 2010. Valeriy Matveenko is an author of more than 300 scientific works, including four monographs.

Research activities


Solid Mechanics, Mechanics of materials, Vibrations and stability, Engineering application of solid mechanics, Continuum mechanics, Numerical methods in solid mechanics, Electroviscoelasticity and its applications to smart-materials, Asymmetric elasticity theory, Aeroelasticity, Thermomechanics of polymer materials in conditions of relaxation and phase transitions.



The finite element method has been extended to include the algorithms for numerical simulation of elastic bodies made of incompressible or weakly compressible materials. New methods for constructing singular solutions of two- and three-dimensional problems of the elasticity theory have been proposed. The obtained solutions have been used to gain new numerical data on the character of stress singularity at the vertices of different types of conical bodies and polyhedral wedges and also at the points of a spatial crack tip where its smoothness is broken. For different types of singular points, a new family of two- and three-dimensional singular elements has been constructed and mathematically substantiated. The problems of optimization of elastic body geometry in the vicinity of singular points have been formulated and solved. The analysis of the obtained solution has shown that the optimal surfaces have common properties. The algorithms for solving elastic problems for bodies with singular points are used to refine the test methods for adhesion strength and adhesive bond strength.
New analytical solutions of two-dimensional static and dynamic problems of the asymmetric elasticity theory have been obtained. A finite-element algorithm has been constructed to solve two-and three-dimensional static and dynamic problems of the asymmetric theory of elasticity. The solutions obtained in the framework of the asymmetric elasticity theory have been compared with the solutions of classical theory of elasticity. The results of the comparative analysis have been used to design the schemes of experiments, which would be most effective in revealing the couple stress effects of the material behavior.
Methods for solving multi-operator problems of linear viscoelasticity have been elaborated and substantiated mathematically. These methods allowed us find the effect of possible non-monotonic stress variation in piece-wise homogeneous viscoelastic bodies under constant or monotonically changing external loads.
A new mechanical problem on natural vibrations of viscoelastic bodies has been proposed as an effective tool for finding optimal dynamic characteristics of viscoelastic structures. New models have been proposed to describe thermomechanical behavior pf polymers and polymer-based composites taking into account the processes of their polymerization, crystallization and glass transition. The experimental methods have been developed to identify the model parameters, and numerical algorithms have been constructed to solve the corresponding boundary value problems. The problems on natural and forced vibrations of piece-wise homogeneous electroviscoelastic bodies with passive and active external electric circuits including the resistance, capacitance and inductance elements have been stated. Practical applications of these problems to the case of finding optimal dynamic characteristics of the structures made of smart-materials on the basis of piezo elements have been considered.
An algorithm for solving the stability problem of single- or multilayer cylindrical and conical shells subjected to external or internal fluid or gas flows has been developed. A numerical algorithm has been constructed to solve the stability problem of a rapidly rotating deformable body. Computational methods have been developed to solve the inverse problems dealing with identification of elastic and viscoelastic properties of a material based on the data of natural tests. Recently, a series of investigations have been made in the field of design if intellectual systems for monitoring the mechanical state of technical objects and constructions.

Valeriy Matveenko is: Member of the Presidium of the Russian National Committee on Theoretical and Applied Mechanics; Member of the Scientific Councils on Solid Mechanics and Mechanics of Composite Materials and Structures of the Russian Academy of Sciences; Member of the Presidium of the Russian Academy of Sciences; Member of the Presidium of the Ural Scientific Center of the Russian Academy of Sciences; Member of the Supervisory Council of the Perm State Technical University; Chairman of the Expert Commission on Mathematics and Mechanics of the Council on Grants of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools of the Russian Federation; Editor in Chief of the journal «Computational Continuum Mechanics»; Member of the Editorial Boards of several international and Russian scientific journals.

The State Prize in science and engineering (1999), The Medal for Labor Merits (1986), The Order of Honour (1999), The Order for Services to Motherland” 4th rank (2008), The mark of distinction “The Gold Emblem of Perm region” (2005).

Versatile Services that Make Studying Easy
We write effective, thought-provoking essays from scratch
We create erudite academic research papers
We champion seasoned experts for dissertations
We make it our business to construct successful business papers
What if the quality isn’t so great?
Our writers are sourced from experts, and complete an obstacle course of testing to join our brigade. Ours is a top service in the English-speaking world.
How do I know the professor won’t find out?
Everything is confidential. So you know your student paper is wholly yours, we use CopyScape and WriteCheck to guarantee originality (never TurnItIn, which professors patrol).
What if it doesn’t meet my expectations?
Unchanged instructions afford you 10 days to request edits after our agreed due date. With 94% satisfaction, we work until your hair is comfortably cool.
Clients enjoy the breezy experience of working with us
Click to learn our proven method

Nussbaum, editors, (New York: Oxford University Press, 1998).


Clinton, (New York: Cambridge University Press, 1995).

Professor Prakash’s mechanistic studies include isolation and characterization by low temperature NMR of reactive intermediates such as carbocations, heterocations, onium ions, onium ylides and carbanions. His achievements include solving the structure of the highly controversial nonclassical 2-norbornyl cation, pagodane and isopagodane dications. The pagodane and isopagodane dications are the first examples of frozen Woodward-Hoffmann transition state analogs. His prolific studies on electron deficient intermediates are of fundamental importance in understanding strong acid catalyzed hydrocarbon conversion processes.

(New York, NY: New York University Press, 1993).

In the process, this Essay makes two suggestions which should be useful to those who wish to reverse other legal trends they find unfortunate—for example, the extensive constitutional protection our legal system gives to pornography or our unusual use of the death penalty as a form of punishment."

with William Bole, (New York: Paulist Press, 1993).


A.S. Fokas has a BSc in Aeronautics from Imperial College (1975), a PhD in Applied Mathematics from the California Institute of Technology (1979) and an MD from the University of Miami, School of Medicine (1986).
In 1986, at the age of 33, he was appointed Professor and Chairman of the Department of Mathematics and Computer Science of Clarkson University, USA. In 1996 he was appointed to a Chair in Applied Mathematics at Imperial College, UK. In 2002 he was appointed to the newly inaugurated Chair in Nonlinear Mathematical Science at the University of Cambridge, UK.

In 2000 he was awarded the Naylor Prize (the most prestigious Prize in Applied Mathematics and Theoretical Physics in UK; the last five earlier recipients were Sir Roger Penrose, Sir Michael Berry, Sir John Ball, F.P. Kelly and S.W. Hawking). In 2004 he was awarded the Aristeion Prize in Sciences of the Academy of Athens (the most prestigious Prize of the Academy given every four years to a single scholar of Greek origin chosen from science, engineering, or medicine). In 2005 he was elected a Professorial Fellow at Clare Hall and was also decorated as the Commander of the Order of Phoenix by the President of the Hellenic Republic. In 2006 he was awarded the Excellence Prize of the Bodossaki Foundation (this premier scientific Prize is awarded every two years to scientists of Greek origin, as chosen by an international committee chaired by a Nobel Laureate). In the period 2004-2008,he received honourary degrees from five Universities. In 2009 he was selected as a Guggenheim Fellow on the basis “of stellar achievement and exceptional promise for continued accomplishment”. In 2010, he was appointed “Ambassador of Hellenism” by the Prefecture of Athens and was also elected a Fellow of the European Academy of Science. He is the youngest member of the Academy of Athens and the first ever Applied Mathematician to be elected a full member to the Academy.

Longfield (New York: Oxford University Press, 1992).

The partial introduction of electron rich elements (especially rhenium) in place of molybdenum in Chevrel phases allowed to control the electronic density in these compounds and to reach the magic number of 24 electrons per cluster, with three consequences: the stabilization of the metastable Mo6S8, the experimental confirmation of the energy diagramme of these materials (illustrated by the changes in transport properties), and the possible existence of rhenium octahedral clusters, provided the ligands were well selected. Indeed, a number of new compounds were synthesized by high temperature solid state reaction and structurally characterized. They belong to the ternary Re-Y-X (Y = chalcogen, X = halogen) and the quaternary diagrammes M-Re-Y-X (M = countercation, in most cases alkaline). Selecting both the total number of ligands and the halogen/chalcogen ratio, a wide variety of stackings were controlled, including molecular or ionic 0-D, 1-D, 2-D and 3-D structures that involve different types of bridges. Some of these compounds are soluble in polar organic solvents, and even in water for restricted examples, giving access to new organic/inorganic hybrids and a nonmaterial approach. Examples are the substitution of counter cations by organic (alkylammonium or TTF derivatives), organometallic, complex, solvated or kryptate ones, the substitution of halogen apical ligands by cyano, azo or pyrazine ligands.

Longfield, editors, (New York: Oxford University Press, 1992).

He is an honorary member of the Institute of Computational and Applied Mathematics, Greece, as well as an honorary Member of the Philological Society Parnassos, Greece. He is an honorary citizen of Oinousses and of Delphoi.

He is the President of the Governing Body of the National Library of Greece, a member of the Advisory Board of the Goulandris Natural History Museum, a member of the International Advisory Board of the Institute of Mathematical Sciences, Imperial College, UK, and a member of the Advisory Board of the Centre for Nonlinear Mathematics and Applications, Loughborough University, UK. He is or has been a member of the Editorial Board of more than twenty scientific journals, including Proceedings of the Royal Society (Series A), Journal of Mathematical Physics, Selecta Mathematica, Studies in Applied Mathematics and Nonlinearity. He is also Co-Editor in chief of the Journal of Nonlinear Science and Associate Editor of the following three series: Progress in Physics and Mathematical Physics (Birkhauser), Modern Mechanics and Mathematics (CRC) and Publishing Program in Mathematics (de Gruyter).

He has delivered more than 250 invited talks and colloquia at international conferences and major universities including Harvard, Stanford, Princeton, Yale, Berkeley, MIT, Caltech, Columbia, Oxford and Tokyo. Among his recent presentations are the opening address of the 45th Mathematical Olympiad, Greece, 2004, an invited address at the celebration of the Royal Irish Academy for the Bicentennial of W.R. Hamilton, Ireland, 2005, the SIAM Invited Address at the Annual meeting of AMS and MAA, USA, 2006, the opening plenary address of the international conference “Nonlinear Waves - Theory and Applications”, China, 2008, and the opening plenary address at the 2nd World Congress of Controversies in Neurology, 2008. He has also given several presentations addressing relations between mathematics, philosophy and neuroscience, including talks at Oxford, Beijing and the Athens Concert Hall.

He is the author or co-author of three monographs and of more than 250 papers, as well as the co-editor of seven books. He has published in different areas of science ranging from abstract areas such as differential geometry and bi-Hamiltonian structures, to applied areas such as models of chronic myelogenous leukaemia (with J.B. Keller) and protein folding (with I.M. Gel’fand). In particular, he has made seminal contributions in the field of integrability and has played a significant role in the solution of important mathematical problems arising in medical imaging. In the Special Millenium Issue: Mathematical Physics - Past and Future of the Journal of Mathematical Physics, June 2000, which summarised the “most important developments in mathematical physics in the 20th century”, A.S. Fokas was asked to contribute an article on integrability.

89%
of clients claim significantly improved grades thanks to our work.
98%
of students agree they have more time for other things thanks to us.
Clients Speak
“I didn’t expect I’d be thanking you for actually improving my own writing, but I am. You’re like a second professor!”